Problem Set 5

1. Recall that in polytropic stars, pressure and density are simply related as $P = K\rho^{1+1/n}$, where K and n are constants and n is the polytropic index. These stars satisfy the Lane-Emden equation (see notes from class) where the dimensionless variables θ and ξ are defined in tersm of radial coordinate r and density ρ as $r = \alpha \xi$ and $\rho = \lambda \theta^n(r)$ where $\lambda = \rho_c$ is the central density. The relevant boundary conditions are $\theta(0) = 1$, $\theta'(0) = 0$, at the center $(\xi = 0)$ and $\theta(\xi_1) = 0$ at the surface (the first zero crossing of θ , which occurs at $\xi = \xi_1$).

Show the following:

- (a) The radius of the star is $R = [(n+1)K/(4\pi G)]^{1/2} \rho_c^{[(1-n)/n]} \xi_1$
- (b) The total mass of a polytropic star is $M = -4\pi\alpha^3 \rho_c \xi_1^2 (d\theta/d\xi)_{\xi_1}$.
- (c) The ratio of the mean density to the central density is $\frac{\bar{\rho}}{\rho_c} = -(3/\xi_1)(d\theta/d\xi)_{\xi_1}$.
- (d) The central pressure is $P_c = [4\pi(n+1)(d\theta/d\xi)_{\xi_1}^2]^{-1}(GM^2/R^4)$. (Extra credit:)
- (e) For an ideal gas equation of state, the variable θ is a dimensionless temperature, such that $T(r) = T_c \theta(r)$.
- 2. A star supported by a mixture of gas and radiation pressure is an n=3 polytrope where K is a function of the constant $\beta=P_{gas}/P$ (where $P=P_{gas}+P_{rad}$ i.e., the Eddington-standard model). Using the equations derived above and the Table posted on the class webpage, calculate β for a star with $M=30M_{\odot}$. What is the dominat pressure in such a massive star?
- 3. Use the linear relation for the mass density in Eq. (2) and the pressure as a function of radius P(r) derived in Question 3 of Problem Set 1 (derived by applying hydrostatic equilibrium) show that, if the equation of state is that of a perfect gas, the temperature is given by:

$$T(r) = \frac{\mu m_H GM}{12kR} (5 + 5x - 19x^2 + 9x^3), \tag{1}$$

where x = r/R, M is the total mass of the star and μ is the mean molecular weight of the gas. Use the temperature gradient predicted at r = 1/2R by the relation above, along with the equation of radiative equilibrium, to obtain a relation between mass, M and luminosity L. You may assume that L(r) = L =constant, and that pure electron scattering dominates the opacity (i.e. $\kappa = \kappa_0 = \text{constant}$)