33-467: Astrophysics of Stars and the Galaxy

Due: Monday 12th September.

Problems 1 and 2 are worth 5 points. Problem 3 and 4, 10 points.

Problem Set 1

- 1. Given that the luminosity of the Sun is 3.8×10^{33} erg s⁻¹ and that the bolometric magnitude of the Sun is M=4.7, estimate the distance at the which the Sun could just be seen by the naked eye (the naked eye can detect a star of apparent magnitude
 - 6). Estimate the number of photons incident on the eye per second in this situation.
- 2. (a) Sketch the HR diagram for an old globular cluster, label the main sequence, the red giant and horizontal branch.
 - (b) Using the observed mass-luminosity relation for nearby stars argue that stars must be forming at the present day.
 - (c) The main sequence of the Pleiades cluster consists of stars with mass less than $6M_{\odot}$; the more massive stars have already evolved off the main sequence. Estimate the age of the Pleiades cluster.
- 3. Suppose that the density of a star varies linearly from the center to the surface,

$$\rho = \rho_c \left(1 - \frac{r}{R} \right),\tag{1}$$

where ρ_c is the central density and R the stellar radius. Use the equation of mass continuity to show that

$$m(r) = \frac{4\pi}{3}\rho_c r^3 \left(1 - \frac{3r}{4R}\right). \tag{2}$$

and find the total mass of the star. Hence show that $\rho_c = 4\bar{\rho}$, where $\bar{\rho}$ is the mean stellar density.

Use the equation of hydrostatic equilibrium to show that the central pressure of the star is given by

$$P_c = \frac{5}{4\pi} \frac{GM^2}{R^4},\tag{3}$$

and hence obtain a numerical value of the Sun's central pressure and temperaturewith this model (assuming that the equation of stat is that of a perfect gas lawwith $\mu = 0.61$, the mean molucular weight for "cosmic abundances").

4. The equation of motion of a mass element at the surface of a star of mass M, that has no internal pressure is

$$\frac{d^2r}{dt^2} = -\frac{GM}{r^2}. (4)$$

Show that as the star collapses from an initial radius R to some new radius r, the mass element acquires a velocity

$$v = -\sqrt{2GM(\frac{1}{r} - \frac{1}{R})}. (5)$$

Hence show that the time required for the star to collapse to a point is

$$t = \frac{\pi}{2} \sqrt{\frac{R^3}{2GM}} \tag{6}$$

What is this time for a star of $3M_{\odot}$ which initially has a radius of $10^{-2}R_{\odot}$?